Bioenergy for Sustainable Energy Access in Africa – A scoping study of the opportunities and challenges of bioenergy replication across Sub-Saharan Africa

These two reports were the results of a one year scoping study undertaken by E4tech, in collaboration with LTS International and the University of Edinburgh, to identify and evaluate barriers and opportunities for the replication of modern bioenergy in Sub-Saharan Africa.

The Executive Summary of the Handover and Project Completion report summarises our approach and also the main findings of the three key stages of the project; Literature Review and Stakeholder mapping, Technology Value Chain Prioritisation, and the Technology Country Case Studies. The published report also outlines the next steps as part of the larger Transforming Energy Access (TEA) programme. In the first stage we prioritised Anaerobic Digestion (AD), Gasification and combustion to steam turbine, from an initial list of 27 technologies based on a multi-criteria analysis. Based on this analysis, the research conducted during the second stage generated a database of existing project examples in SSA of these three technologies. Based on existing deployment we prioritised AD and gasification projects as basis for the Technology Country Case Study stage.

Project Completion & Handover Report

The Technology Country Case Study report describes research opportunities for replication of biogas that DFID-supported research could address and leverage. The analysis also identified key barriers for the replication of biogas and gasification and is based on 18 project visits (12 biogas plants and 6 gasifiers) in seven countries in East-, West- and Southern Africa. Three of the profiled biogas projects are technically and commercially successful; they suggest that viable ventures can be developed and operated in SSA under the right conditions.

The barriers experienced by biogas developers fall into the following six categories:
1. Unreliable feedstock supply
2. Costly and insufficiently adapted technology
3. Limited operator technical capacity
4. Lack of viable business models
5. Unfavourable policy and regulation
6. Limited access to manufacturer support and spare parts

In contrast to anaerobic digestion, the developers of all six profiled gasification projects have encountered significant barriers that make replication very challenging. The four community-based plants have been mothballed due to poor commercial viability or technical problems. The fifth is dormant due to lack of feedstock, and the sixth has yet to be commissioned due to gas cleaning problems.

As barriers encountered for gasification were so wide-ranging there is no realistic opportunity for research to boost replication potential and we recommended focusing future research efforts on anaerobic digestion. Through targeted research, DFID could add impetus to the growing commercial investment in SSA’s anaerobic digestion sector. We recommended targeted research themes in each of the six identified barriers to support the replication of anaerobic digestion in SSA. Opportunities for replication of anaerobic digestion in SSA exist in particular due to the large number of agri-businesses with concentrated on-site feedstock availability, existing successful project examples to build upon, and the potential to reduce capital cost and increase productivity through innovation, therefore achieving commercial viability.

Technology Country Case Study Report